Birzeit University Mathematics Department

Math 235 - First Exam
First Semester 2010/2011

Number

Question 1. (39\%). Circle the most correct answer:

1. If f is differentiable function where:
$f(2)=3, f^{\prime}(2)=4$, then the derivative of: $h(x)=\frac{f(x)}{x^{2}-5}$ at $x=2$ is:
(a.) -16
(b) -19
(c) 16
(d) 19

2. The total profit and cost functions are given by: $p(x)=3 x^{2}-5 x+6, c(x)=5-2 x^{2}$.

The marginal of the total revenue is given by:
(a) $2 x-5$.
(b) $-10 x-5$
(c) $10 x-5$. $P=R-c=R=-P-C$
(d) $-10 x+5$

/3. suppose a radio manufacturer has the total cost function $c(x)=3 x+400$, and the total revenue function $R(x)=8 x$. The number of units that must be sold in order to get profit of $\$ 1000$:
(a) 120 units
(b) 125 wits
(c) 200 mits
(d) 280 units

$$
\begin{aligned}
& B=x \\
& 1000=8 x-3 x-400 \\
& 14000=5 x
\end{aligned}
$$

14. The price-Demand equation for the production of calenders is given by: $x=70-3 p$, The marginal revenue at the level of production $x=7$ is:
(a) 828.
(b) $\$-3$.
(c) ${ }^{4} \frac{-1}{3}$.
(d) 18.

$$
\begin{aligned}
& R=P x / \frac{p \& E+\frac{2}{2}+}{3} \\
& R=70 p-3 p^{2} \\
& R=70-6 P
\end{aligned}
$$

5. $\log \sqrt[3]{\frac{7}{2}}=$
(a) $\frac{1}{3} \log _{3}^{2}-\frac{1}{3} \log _{7}^{2}$
(b) $\frac{1}{3} \log 2-\frac{1}{3} \log 7$
(c) $\frac{1}{3} \log 2-\log 7$
(d) $\frac{1}{3} \log 7-\frac{1}{3} \log 2$

1
6. The points of discontinuity of $f(x)=\frac{x^{2}-3 x-4}{x^{2}-5 x}$
(a) $x=0, x=5$
(b) $x=0, x=-5$
(c) $x=-1, x=4$
(d) $x=0-1,-5,4$
(7. suppose a radio manufacturer has the total cost function $c(x)=3 x+40$, and the demand function is $p=x+3$. The profit of Producing and selling 10 units is:
(a) $\$ 70$.
(b) $\$ 130$.
(c) $\$ 200$.
(d) 860 .

1
8. If the cost function of a product is given by $c(x)=3^{x+1}+10 x^{2}+200$ dollars ; then the fixed cost is:
(a) $\$ 0$.
(b) $\$ 200$.
(c) $\$ 203$.
(d) $\$ 213$.
9. If $R(x)$ is the total revenue function for a certain product, then the approximated revenue of the $13^{\text {th }}$ unit is:
(a) $R^{\prime}(13)$
(b) $R(13)$
(c) $R^{\prime}(12)$
(d) $R(13)-R(12)$
10. Solve for $x: 2^{\log _{2}^{x^{2}}}-4^{\log _{4}^{2 x}}=e^{\ln 15}$
(a) $x=3$

$$
4-16=e^{\ln 15}
$$

(b) $x=5$
(c) $x=5, x=-3$.
(d) $x=-5, x=3$
11. The domain of the function $f(x)=\frac{1}{\sqrt{1+x}}$ is
(a) $(-\infty,-1]$
(b) $(-\infty,-1)$
(c) $[-1, \infty)$
(d) $(-1, \infty)$
12. If $y=\frac{1}{\sqrt{x}}$, then $y^{\prime}=$
(a) $\frac{1}{2 \sqrt[3]{x^{2}}}$
(b) $\frac{-1}{2 \sqrt[3]{x^{2}}}$
(c) $\frac{1}{2 \sqrt{x^{3}}}$
(d) $\frac{-1}{2 \sqrt{x^{3}}}$
13. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{|x-2|}=$
(a) -4
(b) 4
(c) 0
(d) DNE.

Question 2. (12\%) Find the following limits:

$3 \mathrm{~N}^{\lim _{x \rightarrow-1} \frac{x \rightarrow 2 x^{3}}{x^{2}+x}+3 \sqrt{x^{2}+8}}$

$=$

b. How many years will it take for $\$ 1000$ invested at 6% compounded quarterly to be L worth \$1800?

$$
\text { (2) } A=P\left(1+\frac{r}{m}\right)^{m t}
$$

$$
1800=10000\left(1+\frac{66}{4}\right)^{4 t}
$$

$$
1.8=1.05^{4 t}
$$

Question 5. (12\%) The revenue (in dollars) from the sale of x infant car seats is given by:

$$
R(x)=60 x-0.025 x^{2}, \quad 0 \leq x \leq 2400
$$

Answer the following questions:

1. Find the marginal average revenue function.

$$
A^{\prime}(x)=60-0.05 x
$$

2. Find the average change in revenue if production is changed from 1000 car seats
 to 1050 car seats.

$$
\begin{aligned}
& \text { Averge change }=\frac{R(1050)-R(1000)}{1050-1000}=\frac{35437.5-35000}{5} \\
& =\frac{437.5}{5}=8.7 .5
\end{aligned}
$$

3. Find the rate of change of revenue at a production level 1000 car seats.

$$
\begin{aligned}
\text { rate otchange } & =R^{\prime}(x)=R^{\prime}(1000) \\
& =60-0.05(1007)=10
\end{aligned}
$$

4. what will the approximate change in revenue if the production is increased from 1000 car seats to 1050 car seats.

Question 7. (18\%).
Assume that the total cost function of a company's product is linear model, where the fixed cost is $\$ 7$, and the total cost of producing 10 units is $\$ 67$.
Also, the demand function of the product is given by $p(x)=14-x$, where p is the price per unit in dollars, and x is the number of units demanded.
Find the following:
a) The total cost function.
b) The total revenue function.
c) Break-Even points.
d.) The approximated profit of producing and selling the $11^{\text {th }}$ unit.
e) The marginal of average cost function.
f) The rate of change of marginal revenue at $x=3$.

$$
\begin{aligned}
& \text { fixed } \cos t=2,10 \rightarrow 67, P(x)=14-x \\
& R=P \cdot x=14 x-x^{2}
\end{aligned}
$$

a)

$$
\begin{aligned}
& C(x)=C(10)=67 \\
& C(X)=10 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& C(X)=10 x^{2}-3 \\
& \left.3^{6}\right) R=P \cdot x=14 x-x^{2} \\
& 4 R=C \\
& 14 x-x^{2}=10 x-3 \\
& 4 x-x^{2}+3=0
\end{aligned}
$$

$$
\text { e) } y^{y}(x)=10
$$

d)

$$
\begin{aligned}
P & =R-C \\
& =4 x-x^{2}-3 \\
P^{\prime} & =x-2 x
\end{aligned}
$$

